
Making Deep Q-learning Methods Robust to Time Discretization

Julie Alhosh

Abstract

This paper aims to recreate the results of the paper (1) which introduces an off-policy deep reinforcement
learning (DRL) algorithm that is robust to time discretization called Deep Advantage Updating (DAU).
Specifically, the paper empirically proves that Q-learning methods are not robust to time discretization
and highlights the need for an algorithm that can be used in tasks for near continuous environments. Thus,
the paper (1) introduces DAU that achieves good performance regardless of the time discretization when
tested across several gym environments. To reproduce those results, we evaluate the performance of
the discrete DAU algorithm compared to the performance of the DQN algorithm (2) when solving the
OpenAI’s Gym Cartpole environment. Our results agree with the ones in the paper as DAU maintains a
good performance when changing time discretizations compared to DQN which performs worse with
smaller time discretizations.

1 Introduction

DRL algorithms have achieved remarkable results recently in a variety of domains including games such as Go (3), chess,
and shogi (Japanese chess) (4), and dexterous in-hand manipulation tasks (5). However, DRL suffers from high sensitivity
to several factors including changes in environment parameters and hyperparameter tuning. Due to such sensitivities, the
applications of DRL are limited. For example, the ability to transfer learning from imperfect simulators to real-world settings
is crucial in robotics but DRL cannot be used to achieve this goal as it is sensitive to small changes in environment parameters.
Moreover, in near-continuous environments, Q-learning-based approaches tend to be sensitive to time discretization. As
near-continuous time environments include most continuous control environments and robotics, it is of interest to have
a DRL algorithm that is robust to time discretization. Although, there are a few on-policy DRL algorithms that can be
setup to be robust against time discretization including PPO (6), TRPO (7) and A3C (8), the paper (1) focuses on off-policy
algorithms such as DQN (2) and DDPG (9). The paper (1) introduces DAU, an off policy algorithm, and provides empirical
evidence for its robustness to time discretization. In this paper, we show that our results for the discrete action space
environment, Cartpole, are consistent with the results of the original paper providing further support to the deep advantage
updating schema introduced in (1) since the findings generalize to a different implementation.

2 Background

2.1 Continuous-time and near-continuous Markov Decision Processes

Let S = Rd be a set of states, and A be a set of actions. A continuous-time Markov Decision Process (MDP) is defined by
the differential equation

dst
dt

= F (st, at) (1)

where F : S ×A → S is a function that describes the dynamics of the environment.

For any timestep δt > 0, a discretization of the continuous-time MDP with time discretization δt is defined by

Mδt = ⟨S,A, Tδt, rδt, γδt⟩



where Tδt is the transition function. The transition function of a state s is the state obtained when starting at s0 = s and
maintaining the action at = a constant for a time period δt which corresponds to an agent evolving in the continuous
environment as the one defined by (1), but only making observations and choosing actions every δt (1). The discount factor
and reward are defined as follows

γδt := γδt

rδt := δt.r

where γ, r are the discount factor and return of the continuous-time MDP.

We call the MDP defined aboveMδt near-continuous MDP.

2.2 Q-learning in continuous and near-continuous time

The papers (10; 1) provide formal proof that the Q-function collapses to the value function in continuous time (See Theorem
1), thus making it impossible to infer actions based on the Q-function. Although the Q-function would still depend on
actions in near-continuous time when the time discretization, δt is strictly positive, the approximation error of the Q-function
would be larger than the effect of individual actions on the Q-function. This is the theoretical reasoning as to why the
Q-learning-based methods are sensitive to time discretizations and do not perform as well when δt approaches 0.

Theorem 1 (From (1)) Under suitable smoothness assumptions, The action-value function of a near-continuous MDP is
related to its value function via

Qπδt(s, a) = V πδt(s) +O(δt) (2)

when δt→ 0 , for every (s, a) ∈ (S ×A).

2.3 Advantage updating and DAU

A rescaled version of the advantage function (3) provides the same information on actions as the Q-function and does not
collapse to the value function in the continuous-time limit.

Aπδt(s, a) :=
Qπδt(s, a)− V πδt(s)

δt
(3)

Under suitable assumptions, the rescaled version of the advantage function allows us to write the discretized version of the
Q-function as

Qπδt(s, a) = V πδt(s) + δtAπδt(s, a) (4)

The DAU algorithm introduced in (1), trains two networks, Vθ which approximates the value function V πδt, and Aψ to
approximate the rescaled advantage function Aπδt. The algorithm uses those networks to compute the action-value function
during training. Furthermore, the following equation needs to be satisfied to guarantee the stability of Aψ when δt→ 0

Aψ(s, π(s)) = 0 (5)

In the original paper (1), they introduce a parametric function Āψ to define Aψ as

Aψ(s, a) := Āψ(s, a)− Āψ(s, π(s)) (6)

Since the continuous time limit of the rescaled advantage function depends on actions, this approach overcomes the issue
encountered in standard Q-learning-based approaches.

3 Methodology

We test the performance of DQN (2), an off-policy algorithm for environments with a discrete action space and the discrete
version of DAU (1) on a modified Cartpole environment using two values for time discretizations δt ∈ {0.01, 0.001}. It is
important to state that as δt decreases, the run time of an experiment for the same physical time increases by a factor of 1

δt

which is why we only ran experiments on two δt values. Also, in our implementation, we used smaller networks compared

2



to the ones used in the original paper to favor smaller run time and we were able to do so because Cartpole is a relatively
easy environment to learn.

Considering that the default value for the timestep between state updates in the Cartpole environment is 0.021, the δt values
we chose to test the algorithms DQN and DAU cover a range of values that are sufficient to check whether the algorithms
are robust to time discretization. We modify the OpenAI’s Gym Cartpole environment to accommodate for different time
discretizations which includes changing the timestep between state updates, the reward threshold, and the maximum number
of steps.

To implement DQN, we start by following a tutorial2 and the corresponding implementation3. We continue to modify the
implementation mainly to allow for different time discretizations which include scaling the hyperparameters and the reward.
The pseudo-code of the resulting DQN implementation is shown in Algorithm 1. As for the discrete DAU algorithm, we
implement it following the pseudo-code shown in Algorithm 2.

Algorithm 1 DQN for time discretization δt
Input:
γ discount factor.
α learning rate.
δt time discretization.
n_update target network update frequency.

1: Initialize ψ parameter of network Qψ .
2: Copy ψ parameters to ψ′ parameter of target network Q′

ψ .
3: Initialize D, a replay buffer.
4: opt an optimizer for the network Qψ with learning rate δt ∗ α.
5: for i = 1, 2, . . . , Ntrain do
6: if i mod n_update = 0 then
7: ψ′ ← ψ

8: end if
9: Observe initial state s = s0

10: while s′ is not None, do
11: a = πϵ−greedy(s)

12: Perform a and observe (r′, d′, s′).
13: Store (s, a, r′, d′, s′) in D.
14: s← s′

15: If the size of D is sufficient, sample a batch of N random transitions from D.
16: Q̃i ← riδt+ (1− di)γδtmaxa′ Qψ′(s

′i, a′)

17: ∆ψ ← 1
N

∑N
i=0

(
Qi − Q̃i

)
∂ψQψ(s

i, ai)

18: Update ψ with opt, ∆ψ and learning rate δt ∗ α.
19: end while
20: end for

The main difference between the two implementations is that DQN keeps track of and updates a Q-network and a target
Q-network, where the weights of the target Q-network are updated every n_update training iteration whereas the DAU
algorithm keeps track of and updates a value function network, Vθ, and an advantage function network, Aψ. All networks
used in both algorithms share the same structure and use RMSProp as an optimizer. Moreover, both algorithms scale the
reward obtained, the discount factor, and the learning rate according to the time discretization δt. For each time discretization

1Information available at: https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py
2Available at: https://towardsdatascience.com/deep-q-learning-for-the-cartpole-44d761085c2f
3Available at: https://github.com/ritakurban/Practical-Data-Science/blob/master/DQL_CartPole.ipynb

3



δt ∈ {0.01, 0.001} and for each algorithm, the learning curve is averaged over two independent runs. The learning curves
for DQN and DAU are presented in Figures 1 and 2 respectively.

Algorithm 2 Discrete DAU for time discretization δt
Input:
γ discount factor.
δt time discretization.
α learning rate.

1: Initialize θ, ψ parameters of the networks Vθ, Āψ .
2: Initialize D, a replay buffer.
3: optV , optĀ optimizers for the networks Vθ, Āψ respectively with learning rate δt ∗ α.
4: for i = 1, 2, . . . , Ntrain do
5: Observe initial state s = s0

6: while s′ is not None, do
7: a = πϵ−greedy(s)

8: Perform a and observe (r′, d′, s′).
9: Store (s, a, r′, d′, s′) in D.

10: s← s′

11: If the size of D is sufficient, sample a batch of N random transitions from D.
12: Qi ← Vθ(s

i) + δt
(
Āψ(s

i, ai)−maxa′ Āψ(s
i, a′)

)
13: Q̃i ← riδt+ (1− di)γδtVθ(s′i)
14: ∆θ ← 1

N

∑N
i=0

(Qi−Q̃i)∂θVθ(s′i)
δt

15: ∆ψ ← 1
N

∑N
i=0

(Qi−Q̃i)∂ψ
(
Āψ(s

i,ai)−maxa′ Āψ(s
i,a′)

)
δt

16: Update θ with optV , ∆θ and learning rate δt ∗ α.
17: Update ψ with optĀ, ∆ψ and learning rate δt ∗ α.
18: end while
19: end for

4 Experimental Results

As discussed in the introduction, it is vital for many near-continuous environments including continuous control environments
and robotics that the algorithms used to solve the environment are robust to time discretization. We test the proposed
algorithm, discrete DAU, against the DQN algorithm by running two independent experiments for each value δt ∈
{0.01, 0.001} to train both algorithms on the Cartpole environment for 180 episodes each. We plot the average returns of
those experiments for each algorithm along with the standard deviation against the physical time in hours in Figures 1 and 2.

For the DQN algorithm (see Figure 1), we notice that the algorithm learns well when δt = 0.01 as it achieves returns of
approximately 200 after learning for 0.05h in physical time. However, its performance decreases significantly as the time
discretization drops to δt = 0.001 where it achieves returns of approximately a 100. As for the discrete DAU algorithm
(see Figure 2), we can see that algorithm learns well similar to the performance of DQN when δt = 0.01 as it achieves
returns of approximately 200 after learning for 0.04h in physical time and achieves a slightly better performance as the time
discretization drops to δt = 0.001 where it achieves returns of approximately 225 after learning for about 0.09h in physical
time.

4



Figure 1: Learning curve for DQN on the Cartpole environment.

Figure 2: Learning curve for discrete DAU on the Cartpole environment.

5



These results show that the discrete DAU algorithm learns good policies regardless of the time discretization whereas the
DQN algorithm fails to adapt to a smaller time discretization. Although we used different implementations than the ones
used in the original paper, our results agree with the results of the paper (1) adding further support to their results as discrete
DAU is shown to be robust to time discretization and implementation details.

5 Conclusion

The purpose of this paper was to reproduce the findings found in (1), which showed that off-policy Q-learning-based
DRL algorithms are not robust against time discretization and introduced an off policy algorithm that is robust to time
discretization. Thus, we conducted experiments on the Cartpole environment which included training the DQN and discrete
DAU algorithms using two time discretizations. We found that the DQN algorithm fails to learn a good policy as the time
discretization decreases while the discrete DAU algorithm is much more robust to small time discretization.

6



References
[1] C. Tallec, L. Blier, and Y. Ollivier, “Making deep q-learning methods robust to time discretization,” CoRR, vol. abs/1901.09732,

2019.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control
through deep reinforcement learning,” Nature, vol. 518, 2015.

[3] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen,
T. Lillicrap, F. Hui, L. Sifre, G. v. d. Driessche, T. Graepel, and D. Hassabis, “Mastering the game of Go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. P. Lillicrap,
K. Simonyan, and D. Hassabis, “Mastering chess and shogi by self-play with a general reinforcement learning algorithm,” CoRR,
vol. abs/1712.01815, 2017.

[5] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell,
A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba, “Learning dexterous in-hand manipulation,” CoRR,
vol. abs/1808.00177, 2018.

[6] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017.

[7] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region policy optimization,” CoRR, vol. abs/1502.05477, 2015.

[8] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous methods for
deep reinforcement learning,” in Proceedings of The 33rd International Conference on Machine Learning (M. F. Balcan and K. Q.
Weinberger, eds.), vol. 48 of Proceedings of Machine Learning Research, (New York, New York, USA), pp. 1928–1937, PMLR,
20–22 Jun 2016.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” in 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2016.

[10] L. C. Baird, “Reinforcement learning in continuous time: advantage updating,” Proceedings of 1994 IEEE International Conference
on Neural Networks (ICNN’94), vol. 4, pp. 2448–2453 vol.4, 1994.

7


	Introduction
	Background
	Continuous-time and near-continuous Markov Decision Processes
	Q-learning in continuous and near-continuous time
	Advantage updating and DAU

	Methodology
	Experimental Results
	Conclusion

