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Flow Construction

In this project, the main concern is studying and computing certain flows on the space
of Poisson structures and checking their (non)triviality. To understand this, the following
background information is needed.

A Poisson Bracket on a manifold M is a bilinear operation:

{·, ·} : C∞(M)× C∞(M)→ C∞(M), (1)

such that for all f, g, h ∈ C∞(M) the following properties hold:

1. Skew-symmetry : {f, g} = −{g, f}
2. Derivation rule: {f, gh} = {f, g}h+ g{f, h}
3. Jacobi identity : {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0

At any point p in M , {f, g} depends on the first derivatives of f and g at p (property 2).
We can represent a Poisson bracket by a Poisson bivector P which has the following form:

P =
∑
i,j

P i,j ∂
∂xi
∧ ∂

∂xj
(2)

where P i,j = {xi, xj} are smooth functions.
A Kontsevich quantization graph is a directed graph Γ with the set of vertices

VΓ = {1, · · · , n} t {L,R} and 2n edges, where {1, · · · , n} is the set of internal vertices and
{L,R} is the set of external vertices. The edges are labelled, the out degree of each internal
vertex is 2 and the out degree of each external vertex is 0. See graph in Figure 1.

Figure 1: A Kontsevich
quantization graph (n=3).

Kontsevich [2] associates a bidifferential operator BG,α to a graph
G and a bivector α. The bidifferential operator sums over all the
possible labellings of the edges of G where each term is a product of
partial derivatives that correspond to the edges.

Example 1: Consider the graph in Figure 1. The bidifferential
operator associated with it is

(f, g) 7→
∑
i1,··· ,i6

αi1i2αi3i4∂i4(α
i5i6)∂i1∂i5(f)∂i2∂i3∂i6(g)

Take an unoriented graph G, and orient G in all possible ways that would give a Kont-
sevich quantization graph after adding the external vertices L and R. Summing over the
orientations Γ =

∑
iwiΓi will give an ordinary differential equation (flow) on the space of

bivectors:

dPt
dt

= FG(Pt) =
∑
i

wΓi
BΓi

(P) (3)

It was observed by Kontsevich that for certain special linear combinations of unoriented
graphs G called graph cocycles, this flow preserves the space of Poisson structures i.e. if Pt
is a solution and [P0,P0] = 0, then [Pt,Pt] = 0 for all t.
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Example 2: The simplest graph cocycle is given by taking G to be the wheel graph
with 3 spokes which will produce the graphs in Figure 2. Given a Poisson bivector P , the
flow equation (3) becomes:

dPt
dt

= FG(Pt) = wΓ1BΓ1(P) + wΓ2BΓ2(P) = 24BΓ1(P) + 8BΓ2(P)

Figure 2: A: orienting G in all possible ways which gives G1 and G2. B : adding the vertices L and R to
the graphs G1 and G2 obtained by A such that the resulting graphs are Kontsevich quantization graphs of

the tetrahedral graph cocycle; Γ1 and Γ2 respectively.

We say that a solution to the flow equation (3) is trivial if Pt is obtained from its initial
state by a t-dependent change of coordinates. The triviality is equivalent to saying that
FG(Pt) is a Poisson coboundary which means that there exist a vector field Vt such that

FG(Pt) = [Pt, Vt] (4)

where [·, ·] is the Schouten-Nijenhuis bracket.
The research problem is to determine the (non)triviality of the flows.

Results

Calculating the flow using the formula given in equation (3) is nontrivial even for the simple
case of the tetraherdral graph cocycle. Therefore, to compute the flow, we used a previ-
ously written SageMath package [1] to represent the Poisson bivectors and the Kontsevich
quantization graphs and to compute their bidifferential operators. We wrote the code with
the package mentioned because we tested the SageMath manifolds package and it turned
out to be much slower. The flow bivector is essentially represented as a matrix. One of the
difficulties was to generate the graphs and compute their weights in a relatively fast way.
Therefore, we used a program called nauty [4] to orient the graphs along with methods from
the graphs package of SageMath. To avoid long run-time, and since such graph cocycles are
known, we saved their respective oriented Kontsevich quantization graphs and weights in a
database. Also, to save time when trying to write the commands to calculate the flow, the
code uses another database that includes the graph cocycles.

We applied the code to calculate the flow of some examples and most of the resulting
flows were identically zero but in one interesting case, the computed flow was non zero even
though it is known that it is a coboundary [3]. Now, we are developing a method that checks
whether or not a flow is a coboundary. After that, it will be very interesting to test more
examples.
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